Special Issue: Probabilistic models of cognition Probabilistic inference in human semantic memory

نویسندگان

  • Mark Steyvers
  • Thomas L. Griffiths
  • Simon Dennis
چکیده

The idea of viewing human cognition as a rational solution to computational problems posed by the environment has influenced several recent theories of human memory. The first rational models of memory demonstrated that human memory seems to be remarkably well adapted to environmental statistics but made only minimal assumptions about the form of the environmental information represented in memory. Recently, several probabilistic methods for representing the latent semantic structure of language have been developed, drawing on research in computer science, statistics and computational linguistics. These methods provide a means of extending rational models of memory retrieval to linguistic stimuli, and a way to explore the influence of the statistics of language on human memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Primer on Probabilistic Inference

Research in computer science, engineering, mathematics, and statistics has produced a variety of tools that are useful in developing probabilistic models of human cognition. We provide an introduction to the principles of probabilistic inference that are used in the papers appearing in this special issue. We lay out the basic principles that underlie probabilistic models in detail, and then bri...

متن کامل

Technical Introduction: A primer on probabilistic inference

Research in computer science, engineering, mathematics and statistics has produced a variety of tools that are useful in developing probabilistic models of human cognition. We provide an introduction to the principles of probabilistic inference that are used in the papers appearing in this special issue. We lay out the basic principles that underlie probabilistic models in detail, and then brie...

متن کامل

Probabilistic inference in human semantic memory.

The idea of viewing human cognition as a rational solution to computational problems posed by the environment has influenced several recent theories of human memory. The first rational models of memory demonstrated that human memory seems to be remarkably well adapted to environmental statistics but made only minimal assumptions about the form of the environmental information represented in mem...

متن کامل

Approximating Bayesian inference with a sparse distributed memory system

Probabilistic models of cognition have enjoyed recent success in explaining how people make inductive inferences. Yet, the difficult computations over structured representations that are often required by these models seem incompatible with the continuous and distributed nature of human minds. To reconcile this issue, and to understand the implications of constraints on probabilistic models, we...

متن کامل

Special Issue: Probabilistic models of cognition Probabilistic models of language processing and acquisition

Probabilistic methods are providing new explanatory approaches to fundamental cognitive science questions of howhumans structure, process and acquire language. This review examines probabilistic models defined over traditional symbolic structures. Language comprehension and production involve probabilistic inference in such models; and acquisition involves choosing the best model, given innate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006